61 research outputs found

    Development and Numerical Optimization of a System of Integrated Agents for Serial Production Lines

    Get PDF
    In modern high-volume industries, the serial production line (SPL) is of growing importance due to the inexorable increase in the complexity of manufacturing systems and the associated production costs. Optimal decisions regarding buffer size and the selection of components when designing and implementing an SPL can be difficult, often requiring complex analytical models, which can be difficult to conceive and construct. Here, we propose a model to evaluate and optimize the design of an SPL, integrating numerical simulation with artificial intelligence (AI). Numerous studies relating to the design of SPL systems have been published, but few have considered the simultaneous consideration of a number of decision variables. Indeed, the authors have been unable to locate in the published literature even one work that integrated the selection of components with the optimization of buffer sizes into a single framework. In this research, a System of Integrated Agents Numerical Optimization (SIGN) is developed by which the SPL design can be optimized. A SIGN consists of a components selection system and a decision support system. A SIGN aids the selection of machine tools, buffer sizes, and robots via the integration of AI and simulations. Using a purpose-developed interface, a user inputs the appropriate SPL parameters and settings, selects the decision-making and optimization techniques to use, and then displays output results. It will be implemented in open-source software to broaden the impact of the SIGN and extend its influence in industry and academia. It is expected that the results of this research project will significantly influence open-source manufacturing system design and, consequently, industrial and economic development

    Towards devising pilot experiments to establish parameter window for FSP of aluminum alloys

    Get PDF
    One of the major challenges encountered during friction stir processing (FSP) is the establishment of a process parameter window in order to achieve processed surfaces with an acceptable quality as it is an exhaustive task that involves enormous resources, time and efforts. Sometimes this task is so difficult that the trial may run into futility. This work belongs to a theme of FSP that is not much reported in the literature. This is a maiden work to lay a roadmap for the FSP parameter range in a quick and effective manner. The present study results from first-hand experiments performed to produce surface composites on AA6063 alloy using a mixture of SiC+Fe+Mn+Sn as reinforcement in such a manner that a novice professional can pan out ways to identify and classify irregularities/defects, associate them with the causes and obtain feasible parameter window. In this work, a methodology for identification and selection of optimum tool speed (rpm), processing speed and plunge depth has been demonstrated. The parameter window was established by analysing main surface irregularities associated with the parameters and taking corrective modification to eventually arrive at the feasible range. The established range was validated through an experiment performed with the parameters lying within the established window. The validation was supported with microstructural characterization, micro-hardness measurement, thermal analysis, corrosion analysis and the comprehensive analysis presented in this work has been done with the help of the image processing technique. Results show that grain refinement and homogeneous distribution of reinforcement present in the stir zone developed during FSP at the appropriate process parameters. Furthermore, grain refinement enhances the hardness by 28.29% and the corrosion resistance by 13.6%. The highest temperature i.e. 423.25°C is achieved on the advancing side of the processed zone

    Principles and Characteristics of Different EDM Processes in Machining Tool and Die Steels

    Get PDF
    Electric discharge machining (EDM) is one of the most efficient manufacturing technologies used in highly accurate processing of all electrically conductive materials irrespective of their mechanical properties. It is a non-contact thermal energy process applied to a wide range of applications, such as in the aerospace, automotive, tools, molds and dies, and surgical implements, especially for the hard-to-cut materials with simple or complex shapes and geometries. Applications to molds, tools, and dies are among the large-scale initial applications of this process. Machining these items is especially difficult as they are made of hard-to-machine materials, they have very complex shapes of high accuracy, and their surface characteristics are sensitive to machining conditions. The review of this kind with an emphasis on tool and die materials is extremely useful to relevant professions, practitioners, and researchers. This review provides an overview of the studies related to EDM with regard to selection of the process, material, and operating parameters, the effect on responses, various process variants, and new techniques adopted to enhance process performance. This paper reviews research studies on the EDM of different grades of tool steel materials. This article (i) pans out the reported literature in a modular manner with a focus on experimental and theoretical studies aimed at improving process performance, including material removal rate, surface quality, and tool wear rate, among others, (ii) examines evaluation models and techniques used to determine process conditions, and (iii) discusses the developments in EDM and outlines the trends for future research. The conclusion section of the article carves out precise highlights and gaps from each section, thus making the article easy to navigate and extremely useful to the related research communit

    PLOS ONE-CAD-VR Data

    No full text
    For CAD-VR Data Translation available for PLOS ONE Journal

    Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing

    No full text
    With the advent of the fourth industrial revolution, the application of artificial intelligence in the manufacturing domain is becoming prevalent. Maintenance is one of the important activities in the manufacturing process, and it requires proper attention. To decrease maintenance costs and to attain sustainable operational management, Predictive Maintenance (PdM) has become important in industries. The principle of PdM is forecasting the next failure; thus, the respective maintenance is scheduled before the predicted failure occurs. In the construction of maintenance management, facility managers generally employ reactive or preventive maintenance mechanisms. However, reactive maintenance does not have the ability to prevent failure and preventive maintenance does not have the ability to predict the future condition of mechanical, electrical, or plumbing components. Therefore, to improve the facilities’ lifespans, such components are repaired in advance. In this paper, a PdM planning model is developed using intelligent methods. The developed method involves five main phases: (a) data cleaning, (b) data normalization, (c) optimal feature selection, (d) prediction network decision-making, and (e) prediction. Initially, the data pertaining to PdM are subjected to data cleaning and normalization in order to arrange the data within a particular limit. Optimal feature selection is performed next, to reduce redundant information. Optimal feature selection is performed using a hybrid of the Jaya algorithm and Sea Lion Optimization (SLnO). As the prediction values differ in range, it is difficult for machine learning or deep learning face to provide accurate results. Thus, a support vector machine (SVM) is used to make decisions regarding the prediction network. The SVM identifies the network in which prediction can be performed for the concerned range. Finally, the prediction is accomplished using a Recurrent Neural Network (RNN). In the RNN, the weight is optimized using the hybrid J-SLnO. A comparative analysis demonstrates that the proposed model can efficiently predict the future condition of components for maintenance planning by using two datasets—aircraft engine and lithium-ion battery datasets

    Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing

    No full text
    With the advent of the fourth industrial revolution, the application of artificial intelligence in the manufacturing domain is becoming prevalent. Maintenance is one of the important activities in the manufacturing process, and it requires proper attention. To decrease maintenance costs and to attain sustainable operational management, Predictive Maintenance (PdM) has become important in industries. The principle of PdM is forecasting the next failure; thus, the respective maintenance is scheduled before the predicted failure occurs. In the construction of maintenance management, facility managers generally employ reactive or preventive maintenance mechanisms. However, reactive maintenance does not have the ability to prevent failure and preventive maintenance does not have the ability to predict the future condition of mechanical, electrical, or plumbing components. Therefore, to improve the facilities’ lifespans, such components are repaired in advance. In this paper, a PdM planning model is developed using intelligent methods. The developed method involves five main phases: (a) data cleaning, (b) data normalization, (c) optimal feature selection, (d) prediction network decision-making, and (e) prediction. Initially, the data pertaining to PdM are subjected to data cleaning and normalization in order to arrange the data within a particular limit. Optimal feature selection is performed next, to reduce redundant information. Optimal feature selection is performed using a hybrid of the Jaya algorithm and Sea Lion Optimization (SLnO). As the prediction values differ in range, it is difficult for machine learning or deep learning face to provide accurate results. Thus, a support vector machine (SVM) is used to make decisions regarding the prediction network. The SVM identifies the network in which prediction can be performed for the concerned range. Finally, the prediction is accomplished using a Recurrent Neural Network (RNN). In the RNN, the weight is optimized using the hybrid J-SLnO. A comparative analysis demonstrates that the proposed model can efficiently predict the future condition of components for maintenance planning by using two datasets—aircraft engine and lithium-ion battery datasets

    Effects of Viewing Displays from Different Distances on Human Visual System

    No full text
    The current stereoscopic 3D displays have several human-factor issues including visual-fatigue symptoms such as eyestrain, headache, fatigue, nausea, and malaise. The viewing time and viewing distance are factors that considerably affect the visual fatigue associated with 3D displays. Hence, this study analyzes the effects of display type (2D vs. 3D) and viewing distance on visual fatigue during a 60-min viewing session based on electroencephalogram (EEG) relative beta power, and alpha/beta power ratio. In this study, twenty male participants watched four videos. The EEGs were recorded at two occipital lobes (O1 and O2) of each participant in the pre-session (3 min), post-session (3 min), and during a 60-min viewing session. The results showed that the decrease in relative beta power of the EEG and the increase in the alpha/beta ratio from the start until the end of the viewing session were significantly higher when watching the 3D display. When the viewing distance was increased from 1.95 m to 3.90 m, the visual fatigue was decreased in the case of the 3D-display, whereas the fatigue was increased in the case of the 2D-display. Moreover, there was approximately the same level of visual fatigue when watching videos in 2D or 3D from a long viewing distance (3.90 m)

    Effect of electrode material in micro-electrical discharge machining of micro-holes drilled in shape memory alloys

    Get PDF
    42-58Machining of advanced engineering materials is a major problem faced by the industry. Electrical discharge machining (EDM) provides a solution to this problem, and it is utilized for machining of such electrically conductive materials. Micro-EDM (µEDM) technology is used to drill micro-holes in various components in the aerospace industry and automotive industry. Such holes need to have good surface finish and good dimensional accuracy. It is difficult to maintain a high accuracy and good surface finish at such a minute level. Therefore, this work tries to solve this issue by conducting an experimental study in which micro-holes are drilled in the Ni-Ti shape memory alloy (SMA) and stainless steel (SS) using µEDM. The effect of the electrode material on micro-holes is investigated. Surface characteristics and dimensional accuracy of the machined micro-holes are evaluated based on micrographs obtained by scanning electron microscopy (SEM). The results reveal that the material removal rate (MRR), surface finish, and dimensional accuracy are significantly affected by the machining parameters (i.e., discharge energy (pulse voltage and capacitance) in R–C circuit during machining), tool electrode material, and type of hole to be drilled (through hole or blind hole). In addition, fine surface finish is also dependent on the electrical and thermal properties of the electrode material

    Computational System to Classify Cyber Crime Offenses using Machine Learning

    No full text
    Particularly in the last decade, Internet usage has been growing rapidly. However, as the Internet becomes a part of the day to day activities, cybercrime is also on the rise. Cybercrime will cost nearly $6 trillion per annum by 2021 as per the cybersecurity ventures report in 2020. For illegal activities, cybercriminals utilize any network computing devices as a primary means of communication with a victims’ devices, so attackers get profit in terms of finance, publicity and others by exploiting the vulnerabilities over the system. Cybercrimes are steadily increasing daily. Evaluating cybercrime attacks and providing protective measures by manual methods using existing technical approaches and also investigations has often failed to control cybercrime attacks. Existing literature in the area of cybercrime offenses suffers from a lack of a computation methods to predict cybercrime, especially on unstructured data. Therefore, this study proposes a flexible computational tool using machine learning techniques to analyze cybercrimes rate at a state wise in a country that helps to classify cybercrimes. Security analytics with the association of data analytic approaches help us for analyzing and classifying offenses from India-based integrated data that may be either structured or unstructured. The main strength of this work is testing analysis reports, which classify the offenses accurately with 99 percent accuracy

    Multi-Response Optimization of Processing Parameters for Micro-Pockets on Alumina Bioceramic Using Rotary Ultrasonic Machining

    No full text
    The machining of ceramic materials is challenging and often impossible to realize with conventional machining tools. In various manufacturing applications, rotary ultrasonic milling (RUM) shows strengths, in particular for the development of high-quality micro-features in ceramic materials. The main variables that influence the performance and price of the product are surface roughness, edge chipping (EC), and material removal rate (MRR) during the processing of ceramics. RUM has been considered in this research for the milling of micro-pockets in bioceramic alumina (Al2O3). Response surface methodology in the context of a central composite design (CCD) is being used to plan the experiments. The impacts of important RUM input parameters concerning cutting speed, feed rate, depth of cut, frequency, and amplitude have been explored on the surface roughness in terms of arithmetic mean value (Ra), the EC, and the MRR of the machined pockets. The main effect and the interaction effect of the implemented RUM parameters show that by providing a lower feed rate and cutting depth levels and elevated frequency and cutting speed, the Ra and the EC can be minimized. At greater levels of feed rate and cutting depth, higher MRR can be obtained. The influence of RUM input parameters on the surface morphology was also recorded and analyzed using scanning electron microscopic (SEM) images. The study of the energy dispersive spectroscopy (EDS) shows that there is no modification in the alumina bioceramic material. Additionally, a multi-response optimization method has been applied by employing a desirability approach with the core objectives of minimizing the EC and Ra and maximizing the MRR of the milled pockets. The obtained experimental values for Ra, EC, and MRR at an optimized parametric setting were 0.301 µm, 12.45 µm, and 0.873 mm3/min respectively with a combined desirability index value of 0.73
    • …
    corecore